
Inception & ResNet: Same Training, Same
Features

David G. McNeely-White, J. Ross Beveridge, and Bruce A. Draper

Colorado State University, Fort Collins, CO 80523, USA

Abstract. Deep convolutional neural networks (CNNs) are the domi-
nant technology in computer vision today. Unfortunately, it’s not clear
how different from each other the best CNNs really are. This paper
measures the similarity between two well-known CNNs, Inception and
ResNet, in terms of the features they extract from images. We find that
Inception’s features can be well approximated as an affine transformation
of ResNet’s features and vice-versa.
The similarity between Inception and ResNet features is surprising. Con-
volutional neural networks learn complex non-linear features of images,
and the architectural differences between the systems suggest that these
functions should take different forms. Instead, they seem to have con-
verged on similar solutions. This suggests that the selection of the train-
ing set may be more important than the selection of the convolutional
architecture.

Keywords: ResNet, Inception, CNN, Feature Mapping

1 Introduction

Deep convolutional neural networks (CNNs) are the dominant technology in
computer vision today, and much of the recent computer vision literature can
be thought of as a competition to find the best vision architecture within the
deep convolutional framework. Despite all this effort, however, it’s not clear how
different from each other the best architectures really are. The best systems
correctly classify images at approximately the same rate. Are they extracting
the same information from images, or just equally discriminating information?

This paper compares two sophisticated CNNs, Inception and ResNet, in
terms of the features they extract from images. Both systems perform simi-
larly on the ILSVRC2012 image recognition challenge [8]. ResNet-v2 152 [4]
labels 78.9% of ILSVRC2012 test images correctly, while Inception-v4 [10] la-
bels 80.2% correctly. On the surface, however, Inception and Resnet appear
quite different. Inception [11] divides processing by scale, merges the results,
and repeats. ResNet [3] has a simpler, single-scale processing unit with data
pass-through connections. Inception produces 1,536 features per image, while
ResNet produces 2,048. They also have disjoint pedigrees: Inception was devel-
oped by Google [5, 10–12]; ResNet was developed at Microsoft in 2016 [3, 4].
Nonetheless, we find that the features extracted by Inception are very similar



2 McNeely-White et al.

to the properties extracted by ResNet, in the sense that affine mappings of one
predict the other. These mappings are accurate enough that mapped features
can be used to label images without retraining the underlying classifier. This
suggests that Inception and ResNet, despite their structural differences, extract
essentially the same properties from images.

The finding that Inception and ResNet features are linked by affine trans-
formations is surprising. Convolutional neural networks have revolutionized the
field of computer vision precisely because they learn complex non-linear fea-
tures of images, and the architectural differences between the systems suggest
that these non-linear functions take different forms. Yet, Inception and ResNet
seem to extract similar properties from images, since their features are (almost)
linear transformations of each other. In essence, their training algorithms seem
to hill-climb in totally different spaces and yet find similar local optima. This
may explain why the two systems perform similarly, but we believe it also has
broader implications. It suggests that the features extracted by Inception and
ResNet are driven less by the details of convolutional architectures, and more
by the content of the training images. If this is true, one would expect many
sophisticated CNNs to perform at similar levels.

2 Related Work

Comparison of task performance (e.g. classification accuracy) on a common
dataset is the most prevalent method for comparing deep learning systems [8].
Visualization techniques are used to peer into internal model representations,
for example network inversion [2] and dissection [1]. Transfer learning can also
be used to compare networks [6].

The closest work to this paper is Lenc et al. [7]. They also find affine map-
pings between CNNs (AlexNet, VGG-16 and ResNet-50). However, they learn
mappings between convolutional layers and train their mappings using supervi-
sion in the form of image labels. We learn unsupervised mappings between final
convolutional layers and fully-connected classifiers. As a result, the notion of
feature equivalence established here is independent of manually-assigned image
labels.

3 Methodology

Our goal is to compare convolutional neural networks, not in terms of their
recognition rates, but in terms of how similar their features are. To do this, we
describe CNNs as the composition of two functions. The first function, F(), ex-
tracts features from input using convolutional layers. In this paper the inputs are
images, but in other domains they could be videos or audio signals or any other
complex input. The second function, C(), is the classifier, usually implemented
through fully-connected layers. Classifiers map feature vectors to labels. Thus a
typical CNN is written as C(F()).



Inception & ResNet: Same 3

Fig. 1. Illustration of how a pair of standard CNNs can be used to create two alterna-
tive CNNs where the features from one are affine mapped to the classifier of another.
The first two rows show CNNs A and B without alteration; the mapping from F () to
C() is the identity mapping I. The next two illustrate the swapping of classifiers and
the introduction of affine mappings MA→B and MB→A.

Throughout the evaluation process, we never retrain or otherwise modify
any of the classification functions C() or feature extraction functions F(). We
do, however, fit affine matrices MA→B and MB→A which create linear mappings
between FA and FB . In other words

F̃A() = MB→AFB() and F̃B() = MA→BFA()

where F̃A is the best approximation to FA and F̃B is the best approximation to
FB across the training data set.

Our goal is to determine if FA() and FB() extract the same properties from
the input. The key insight is that CA() was trained to classify samples based on
the information in FA(). If the same information is in FB(), then the mapping
MB→A should preserve it, and CA() should be able to label images as well from
MB→AFB() as from FA(). If, on the other hand, FA() contains information not
in FB(), then that information will be missing in MB→AFB().

We therefore define a directional loss function between feature extractors.
Let Acc(C()) be the accuracy of a classifier C() across a test data set. Then

LossA,B = Acc(CA(FA()))−Acc(CA(MB→AFB()))

is the loss in discriminatory power that results from replacing A with B. For
example, if system A classifies 90% of all inputs correctly using its own fea-
tures FA(), but only classifies 80% of samples using F̃A() = MA→BFB(), then
LossA,B = 10%, because 10% of the discriminatory power in FA() was missing



4 McNeely-White et al.

from FB(). Note that if A and B are both good systems but extract and rely on
different information, both LossA,B and LossB,A may be high. It is similar to a
divergence in this sense.

It is possible for the loss function defined above to be negative (in which case
we refer to it as a gain). It implies that system A’s classifier, which was trained
on system A’s features, nonetheless performs better on the mapped version of
system B’s features. Since CA() is not retrained, the information gain cannot
be in the form of a new property extracted by B but ignored by A, since the
information would have been dropped in the mapping process (and A’s classifier
wouldn’t know what to do with it anyway). Instead, it implies that some property
detected by A is detected more robustly by B, so that MB→AFB() is a more
reliable predictor of the property than FA() is.

The experiments in this paper use the Inception-v4 network found in the
Tensorflow-Slim GitHub repository [9] and described in [10], and the ResNet-v2
network found in the same repository and described in [4]. These networks were
trained “internally at Google” using identical preprocessing on all 1.1 million
ILSVRC2012 training samples, as described in Szegedy et al. [10]. After loading
these pretrained parameters, we internally validated each network’s top-1 single-
crop classification accuracy on all 50k ILSVRC2012 validation set samples. This
internal validation yielded 78.0% accuracy for ResNet, as opposed to the 78.9%
reported in He et al. [4]. Our Inception-v4 model achieved 80.1%, as opposed to
the 80.2% reported by Szegedy et al. [10].

Given source features from Inception FI() ∈ R1536 and target features from
ResNet FR() ∈ R2048, we solve for an affine mapping. Specifically, we define the
affine mapping as:

F̃R(T ) = MI→R

[
FI(T )

1

]
(1)

The weights in the affine transformation are trained using the ILSVRC2012
1.1 million training images for T in Equation 1. The terms in the affine transfor-
mation are trained using gradient descent. The error function E is the euclidean
distance between the unit-normalized true and predicted vectors, i.e.

E(x, y) =

(
x

‖x‖
− y

‖y‖

)2

where x and y are feature vectors. We compute this function on random batches
of predicted vectors y ∈ F̃R(T ) and their corresponding true vectors x ∈ FR(T ).
This error function was chosen as it is similar to angular distance, but is not
sensitive to computational issues surrounding zero vectors.

After training, features are once again generated as in the previous section.
Using the ILSVRC2012 50,000 validation images V , we produce class predic-
tions CR(MI→RFI(V )) for mapping I → R and similarly CI(MR→IFR(V )) for
mapping R→ I. This is illustrated in Fig. 1. Evaluation is performed by simply
measuring the amount of correctly classified samples for each mapping configu-
ration.



Inception & ResNet: Same 5

4 Results

Section 3 presented the technical details of how we create mappings from one
feature space to another. This section returns to the question of whether the fea-
tures learned by Inception-v4 and ResNet-v2 are similar. We measure similarity
over the validation images from the ILSVRC2012 image recognition challenge.
We apply FI(), Inception’s convolutional network, to these images, producing
1, 536 features per image. We also apply FR(), ResNet’s convolution network,
to the validation images, producing 2, 048 features per image. Finally, we ap-
ply the I→R and R→I mapping functions described above, thereby creating
F̃I = MR→IFR() and F̃R = MI→RFI(). By applying CI() to FI() and F̃I()
and applying CR() to FR() and F̃R() we can measure the similarity between
Inception’s and ResNet’s features.

Description Mapping Correct Percent Loss

Inception-v4 (I → I) 40,037 80.2
ResNet-v2 152 (R → R) 39,022 78.0
Inception-v4 to ResNet-v2 152 (I → R) 39,686 79.4 -1.4
ResNet-v2 152 to Inception-v4 (R → I) 37,866 75.7 4.5

Table 1. Comparison of mapped and unmapped network performance. The values
indicate the number of correctly labelled samples out of 50,000 on the ILSVRC2012
validation dataset is shown along with the percent correct. For the bottom two with
the affine mappings the loss defined in Sect. 3 is shown.

The central question of the paper is whether the features learned by Inception-
v4 and ResNet-v2 are equivalent. Table 1 shows the experimental results for
mapping Inception features onto ResNet features (I→R) and vice-versa (R→I).
The Inception classifier correctly labels 40,037 validation images using its own
features FI(); using ResNet features mapped through R→I (i.e. F̃I()) it correctly
labels 37,866 images. This is a loss of 4.5%. In the other direction, the ResNet
classifier correctly labels 39,022 validation images using its own features FR()
and 39,686 images using Inception’s features mapped through I→R (i.e. F̃R()).
This is a gain rather than loss of 1.4%.

This result strongly suggests that all the information in ResNet’s 2,048 fea-
tures is also contained in Inception’s 1,536 features. Otherwise, I→R could not
have learned a mapping with no loss. The result in the other direction is weaker.
The performance of Inception’s classifier drops by 4.5% when it is given the
mapped version of ResNet’s features. This suggests that Inception-v4, which is
the higher performing of the two systems, may capture some information in its
features that ResNet’s features miss.



6 McNeely-White et al.

5 Conclusion

We looked for equivalence between ResNet and Inception features to see whether
they capture different but roughly equally discriminative information, or whether
they actually extract the same information, just using a different architecture
and encoding to do it. The findings suggests that they are, in fact, extracting
qualitatively the same features, while Inception does it slightly more robustly.
We speculate that this may have implications for other convolutional nets as
well. As nets grow more complex, there may be a law of diminishing returns
if they all end up extracting similar features, but that may be what happens
because that is what the training data supports.

References

1. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quan-
tifying interpretability of deep visual representations. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)

2. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4829–4837 (2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778 (2016)

4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European conference on computer vision, pp. 630–645. Springer (2016)

5. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

6. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better?
arXiv preprint arXiv:1805.08974 (2018)

7. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their
equivariance and equivalence. International Journal of Computer Vision 127(5),
456–476 (2019). DOI 10.1007/s11263-018-1098-y. URL https://doi.org/10.1007/
s11263-018-1098-y

8. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

9. Silberman, N., Guadarrama, S.: Tensorflow-slim image classification model library
(2016). URL https://github.com/tensorflow/models/tree/master/research/slim

10. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-First AAAI Con-
ference on Artificial Intelligence (2017)

11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826 (2016)

https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.1007/s11263-018-1098-y
https://github.com/tensorflow/models/tree/master/research/slim

	Inception & ResNet: Same Training, Same Features

