
Inception and ResNet Features are (Almost) Equivalent

David McNeely-White, J. Ross Beveridge, Bruce A. Draper

Colorado State University, Fort Collins, CO 80523

Abstract

Deep convolutional neural networks (CNNs) are the dominant technology in

computer vision today. Much of the recent computer vision literature can be

thought of as a competition to find the best architecture for vision within the

deep convolutional framework. Despite all the effort invested in developing

sophisticated convolutional architectures, however, it’s not clear how different

from each other the best CNNs really are. This paper measures the similarity

between two well-known CNNs, Inception and ResNet, in terms of the properties

they extract from images. We find that the properties extracted by Inception

are very similar to the properties extracted by ResNet, in the sense that ei-

ther feature set can be well approximated by an affine transformation of the

other. In particular, we find evidence that the information extracted from im-

ages by ResNet is also extracted by Inception, and in some cases may be more

robustly extracted by Inception. In the other direction, most but not all of the

information extracted by Inception is also extracted by ResNet.

The similarity between Inception and ResNet features is surprising. Convo-

lutional neural networks learn complex non-linear features of images, and the

architectural differences between systems suggest that these non-linear functions

should take different forms. Nonetheless, Inception and ResNet were trained

on the same data set and seem to have learned to extract similar properties

from images. In essence, their training algorithms hill-climb in totally different

spaces, but find similar solutions. This suggests that for CNNs, the selection of

the training set may be more important than the selection of the convolutional

architecture.

Preprint submitted to Cognitive Systems Research October 22, 2019

Keywords: ResNet, Inception, CNN, Feature Evaluation, Feature Mapping

1. Introduction

Deep convolutional neural networks (CNNs) are the dominant technology

in computer vision today. CNNs are the top performers in object recognition

competitions [19], and have been applied to many other visual tasks including

object detection and localization [4, 18], segmentation [16], pose estimation [5],5

gesture recognition [17], and visual saliency [14]. As a cognitive architecture,

however, CNNs leave something to be desired, because they aren’t so much

a single architecture as they are a framework that can be used to instantiate

many architectures. Inception [23], for example, is a CNN-based architecture

that divides processing by scale, merges the results, and repeats. ResNet [6],10

on the other hand, has a simpler, single-scale processing unit with many more

layers and a data pass-through between levels (an idea expanded on in DenseNet

[8]). Indeed, much of the computer vision literature over the last five years can

be thought of as a competition among labs to find the best architecture for

vision within the deep convolutional framework.15

Despite all the effort invested in developing convolutional architectures, it’s

not clear how different from each other the best ones really are. Inception

was originally developed by Google in 2014, and refined over the next 2 years

[23, 9, 24, 22]. ResNet was developed at Microsoft in 2016 and also subsequently

refined [6, 7]. Yet despite the conceptual differences in their architectures and20

their disjoint pedigrees, they perform similarly on the ILSVRC2012 image recog-

nition challenge [19]. ResNet-v2 152 [7] labels 78.9% of ILSVRC2012 test images

correctly, while Inception-v4 [22] labels 80.2% correctly. More recent architec-

tures such as PNASNet have improved on these numbers [15], but only slightly

(82.9%). Indeed, much of the recent computer vision literature can be thought25

of as a competition among labs to find the best architecture for vision within

the deep convolutional framework.

This paper addresses the question of how similar Inception and ResNet are to

2

each other, not in terms of the number of ILSVRC2012 test images they correctly

label, but in terms of the properties they extract from images. Both Inception30

and ResNet use a convolutional architecture to extract features from images,

followed by fully-connected classifiers to assign labels to images based on the

extracted features. The architectures used by the two systems to extract features

are different, as are the numbers of features extracted (Inception produces 1,536

features per image, while ResNet produces 2,048). We also know from network35

visualization techniques that the features learned by the early layers of Inception

are qualitatively different from the features learned by the early layers of ResNet

[1] (for a discussion, see the Related Work section below). Nonetheless, we find

that the properties extracted by Inception are very similar to the properties

extracted by ResNet, in the sense that affine mappings of one predict the other.40

These mappings are accurate enough that mapped features can be used to label

images without retraining the underlying classifier. This suggests that Inception

and ResNet, despite their structural differences, exploit essentially the same

properties of images. At the same time, a deeper analysis of our findings suggests

that while they may extract the same properties, Inception appears to do it more45

robustly than ResNet, and may extract a few more properties.

The finding that Inception and ResNet features are linked by affine trans-

formations is surprising. Convolutional neural networks have revolutionized the

field of computer vision precisely because they learn complex non-linear fea-

tures of images, and the architectural differences between the systems suggest50

that these non-linear functions take different forms. Yet, Inception and ResNet

seem to extract similar properties from images, since their features are (almost)

linear transformations of each other. In essence, their training algorithms seem

to hill-climb in totally different spaces and yet find similar solutions. This affine

connection explains why the two systems perform similarly, and we believe it also55

has broader implications. It suggests that the features extracted by Inception

and ResNet are driven less by the details of their convolutional architectures,

and more by the content of the training images. If this is true, one would expect

many sophisticated CNNs to perform at similar levels.

3

2. Related Work60

The most common method for comparing deep learning systems is black

box evaluation. A task is found for which there is a common dataset, and

networks are evaluated to see which produces the lower error rate. For the

task of image labeling, ILSVRC2012 is the most widely used data set. Black

box evaluations are appropriate when the goal is to pick a system to minimize65

error rates, but they provide little information about the relative strengths and

weaknesses of systems. When two systems perform similarly, as with Inception

and ResNet, black box evaluations fail to disclose whether the two systems are

doing essentially the same thing, or instead are very different and just happen

to label roughly the same number of images correctly.70

Unlike black box techniques, CNN visualization techniques were developed

to reveal what image properties a CNN responds to. In activation maximiza-

tion, synthetic images are created which maximally activate a particular neuron,

often revealing interpretable patterns [3, 21]. Using an inverted CNN structure,

deconvolution can be used to find patterns in an image that a particular neuron75

responds to [25]. Network inversion allows reconstruction of input images from

intermediate layer-wise activations, revealing which areas in an image are salient

to a feature [2]. Not all neurons respond to easily recognizable visual patterns,

however. Dissection addresses this by correlating neurons or layers with seman-

tic concepts including textures, materials, and scenes. This last technique was80

used to compare Inception-v1 and ResNet-v2 152 features, and concluded that

ResNet features discriminate more semantic concepts within a data set than

Inception-v1 features do [1]. This is somewhat at odds with the findings in this

paper, but the analysis was done on an older version of Inception (Inception-v1,

not Inception-v4), and analyzed individual features rather than evaluating all85

features as a set.

Initialization-based comparisons are appropriate for comparing CNNs with

the same architecture that were trained for different tasks. The idea is that if

the tasks (and therefore the networks) are similar, one task should train more

4

quickly and accurately when initialized using the trained weights from the other90

task. In essence, similarity is measured by the benefits of a warm start, as in

[11]. Unfortunately, this comparison technique is not applicable when comparing

across architectures.

The most similar prior work to this paper is the paper by Lenc et al. [13].

As in this paper, Lenc et al. learn affine transformations between CNNs trained95

on ILSVRC2012; in their case, the networks are AlexNet [12], VGG-16 [21] and

ResNet-50 v1 [6]. Their emphasis is different, as they train mappings between

convolutional layers, sometimes requiring interpolation, whereas our transfor-

mations map between the output of the final convolutional layer of one network

and the fully-connected classification layer of the other. More significantly, Lenc100

et al. used supervision in the form of image labels to train the mappings. This

effectively creates newly-trained networks. In this paper, we train affine trans-

formations to predict one feature set from the other, without supervision and

independent of any semantic image labels.

3. Background105

This section gives the background information about Inception-v4 and ResNet-

v2 necessary to fully understand this paper. Nothing in this section is novel, but

it is included for completeness. Readers who are already familiar with Inception

and ResNet may choose to skip to Sect. 4.

3.1. ResNet110

Figure 1: ResNet-v1 shortcut connections

5

In 2015, He, et al. introduced ResNet and the residual block (Fig. 3.1),

consisting of two convolutional layers and a non-parameterized shortcut con-

nection which passes the previous block’s output to the next block, unmodified

[6]. This provided a leap in state-of-the-art performance on the ILSVRC2012

challenge using a 152-layer ResNet, and established the property that more115

layers always result in higher recognition accuracy. Continued improvements

can be demonstrated with even 1, 000 layers—a previously unattainable feat [6].

Following this result, they modify the residual block so that ReLU activation

is not applied to the shortcut connection, providing further improvement with

ResNet-v2 in 2016 [7]. This simple structural feature has made its way into120

many other deep CNNs, providing broad success (e.g. DenseNet [8], Inception-

ResNet-v2 [22]). ResNet-v2 152 labels 78.9% of samples correctly using a single

model and 320x320 single-crop on the ILSVRC2012 challenge’s 50k validation

samples, remaining a top-performer today.

3.2. Inception125

Figure 2: Inception-v1 module

Szegedy et al. took a different approach, beginning with a core architecture

for addressing scale variation, known as the Inception module (Fig. 3.2) [23].

These modules use a combination of convolutional layers at different scales and

max pooling computed on the same input and concatenated together. Many

of these modules are stacked together to create Inception. While the modular130

architecture was never abandoned, numerous refinements were made to these

6

modules as the authors optimized for classification performance, training time,

and computational footprint [9, 24, 22]. Though no individual architectural fea-

ture is responsible for Inception’s performance, notable strategies include the

use of 1x1 convolutions (a form of learned pooling for dimension reduction),135

factorizing nxn convolutional layers into stacked nx1 and 1xn layers (a compu-

tational footprint reduction), and batch normalization (a technique for reducing

covariance shift). The most recent Inception variant (Inception-v4) is still a top-

performer on the ILSVRC2012 challenge dataset, correctly labelling 80.2% of

ILSVRC2012 validation samples using a single model and 299x299 single-crop140

[22].

4. Methodology

Our goal is to compare convolutional neural networks, not in terms of their

recognition rates, but in terms of similarity of the features used by the final

classification layers to label images. To do this, we describe CNNs as the com-145

position of two functions. The first function, F (), extracts features from input

using convolutional layers. In this paper the inputs are images, but in other

domains they could be videos or audio signals or any other complex input.

The second function, C(), is the classifier, usually implemented through fully-

connected layers. Classifiers map feature vectors to labels. Thus a typical CNN150

is written as C(F ()).

Since our goal is to compare CNNs, we assume two CNNs A = CA (FA())

and B = CB (FB()). Throughout the evaluation process, we never retrain or

otherwise modify any of the classification functions C() or feature extraction

functions F (). We do, however, fit affine matrices MA→B and MB→A which

create linear mappings between FA and FB . In other words

F̃A() = MB→AFB() and F̃B() = MA→BFA()

where F̃A is the best approximation to FA and F̃B is the best approximation to

FB across the training data set.

7

𝐹𝐴 I 𝐶𝐴
Features

A
Features

A
Softmax
Labels

Image
x

I
Features

B
Features

B
Softmax
Labels

Image
x

𝑀𝐴→𝐵
Features

A
Features
𝐴 → 𝐵

Softmax
Labels

Image
x

𝑀𝐵→𝐴
Features

B
Features
𝐵 → 𝐴

Softmax
Labels

Image
x

A → A

B → B

A → B

B → A

𝐹𝐵

𝐹𝐴

𝐹𝐵

𝐶𝐵

𝐶𝐵

𝐶𝐴

Figure 3: Illustration of how a pair of standard CNNs can be used to create two alternative

CNNs where the features from one are affine mapped to the classifier of another. The notation

used in this figure, in particular F () and C() to capture the mapping from input to the feature

space and then feature space to final classification softmax is further described below. The

first two rows show CNNs A and B without alteration; the mapping from F () to C() is the

identity mapping I. The next two illustrate the swapping of classifiers and the introduction

of affine mappings MA→B and MB→A.

Our goal is to determine if FA() and FB() extract the same properties from

the input. The key insight is that CA() was trained to classify samples based on155

the information in FA(). If the same information is in FB(), then the mapping

MB→A should preserve it, and CA() should be able to label images as well from

MB→AFB() as from FA(). If, on the other hand, FA() contains information not

in FB(), then that information will be missing in MB→AFB().

We therefore define a directional loss function between feature extractors.

Let Acc(C()) be the accuracy of a classifier C() across a test data set. Then

LossA,B = Acc(CA(FA()))−Acc(CA(MB→AFB()))

is the loss in discriminatory power that results from replacing A with B. For

example, if system A classifies 90% of all inputs correctly using its own fea-

tures FA(), but only classifies 80% of samples using F̃A() = MA→BFB(), then

8

LossA,B = 10%, because 10% of the discriminatory power in FA() was missing

from FB(). Similarly

LossB,A = Acc(CB(FB()))−Acc(CB(MA→BFA()))

is the information lost by replacing B with A. Note that if A and B are both160

good systems but extract and rely on different information, both LossA,B and

LossB,A may be high. It is similar to a divergence in this sense.

It is possible for the loss function defined above to be negative (in which

case we refer to it as a gain). This happens when Acc(CA(FA())) is less than

Acc(CA(MA→BFB())), which is an interesting situation. It implies that system165

A’s classifier, which was trained on system A’s features, nonetheless performs

better on the mapped version of system B’s features. Since CA() is not retrained,

the information gain cannot be in the form of a new property extracted by B but

ignored by A, since the information would have been dropped in the mapping

process (and A’s classifier wouldn’t know what to do with it anyway). Instead,170

it implies that some property detected by A is detected more robustly by B, so

that MB→AFB() is a more reliable predictor of the property than FA() is.

4.1. Features

The experiments in this paper use the Inception-v4 network found in the

TensorFlow-Slim GitHub repository [20] and described in [22], and the ResNet-175

v2 network found in the same repository and described in [7]. These networks

were trained “internally at Google” using identical preprocessing on all 1.1 mil-

lion ILSVRC2012 training samples, as described in Szegedy et al. [22]. After

loading these pretrained parameters, we internally validated each network’s top-

1 single-crop classification accuracy on all 50k ILSVRC2012 validation set sam-180

ples. This internal validation yielded 78.0% accuracy for ResNet, as opposed to

the 78.9% reported in He et al. [7]. Our Inception-v4 model achieved 80.1%, as

opposed to the 80.2% reported by Szegedy et al. [22].

9

4.2. Fitting Affine Maps

Given source features from Inception FI() ∈ R1536 and target features from

ResNet FR() ∈ R2048, we solve for an affine mapping. Specifically, we define the

affine mapping as:

F̃R(T) = M ′
I→RFI(T) + bI→R or F̃R(T) = MI→R

FI(T)

1

 (1)

Note for clarity Equation 1 shows two alternative equivalent forms. On the left185

the offsets bI→R are shown explicitly. On the right is the compact augmented

form using a single affine matrix MI→R. The matrix M ′
I→R is embedded in the

upper left portion of MI→R. An extra column is added containing bI→R. An

extra row is added consisting of all zeros followed by a single 1.

The weights in the affine transformation are trained using the ILSVRC2012

1.1 million training images for T in Equation 1. The terms in the affine trans-

formation are trained using gradient descent1. The error function E is the

Euclidean distance between the unit-normalized true and predicted vectors, i.e.

E(x, y) =

(
x

‖x‖
− y

‖y‖

)2

where x and y are feature vectors. This error function was chosen as it is simi-190

lar to angular distance, but is not sensitive to computational issues surrounding

zero vectors. Internally, we find this error function to produce higher-performing

mappings than Euclidean distance of non-normalized true and predicted vec-

tors2. We compute this function on random batches (n = 2048) of predicted

vectors y ∈ F̃R(T) and their corresponding true vectors x ∈ FR(T) over 100k195

iterations. This training procedure is also computed in the other direction,

MR→I . See Fig. 4 for error computed over each batch to illustrate training

completeness.

1 Specifically, the Adam [10] algorithm is used, initialized with a learning rate of 0.1 and

decayed exponentially (at a rate of 1− 1× 10−5 per iteration). Remaining Adam parameters

are left at TensorFlow defaults (β1 = 0.9, β2 = 0.999, ε = 1× 10−8).
2 Our intuition is to incentivize the mapping to reproduce the pattern of the true vector,

rather than it’s absolute position.

10

0 2000 4000 6000 8000 10000
Iteration

0.25

0.50

0.75

1.00

1.25

1.50

Er
ro

r (
L 2

 o
f u

ni
t-n

or
m

. v
ec

to
rs

)

Batch-wise Training Error
I R
R I

Figure 4: Training error calculated for the first 10k training iterations. Each batch consists

of 2048 training samples, randomly sampled from the ILSVRC2012 training dataset.

4.3. Evaluating Mappings

After training, features are once again generated as in the previous section.200

Using the ILSVRC2012 50,000 validation images V , we produce class predic-

tions CR(MI→RFI(V)) for mapping I→R and similarly CI(MR→IFR(V)) for

mapping R→I. This is illustrated in Fig. 3. We chiefly use these classifications

for evaluating the performance of the mapping. A first order evaluation can be

performed by simply measuring the number of correctly classified samples for205

each mapping configuration. Second, we can examine those correctly-classified

mapped samples to those classified correctly by either ResNet or Inception for

evaluation of mapping performance in multiple aspects. Evaluation is performed

by simply measuring the number of correctly classified samples for each mapping

configuration.210

5. Results

Section 4 explains how we create mappings from one feature space to an-

other. This section returns to the question of whether the features learned by

Inception-v4 and ResNet-v2 are similar. We measure similarity over the valida-

tion images from the ILSVRC2012 image recognition challenge. We apply FI(),215

11

Inception’s convolutional network, to these images, producing 1, 536 features

per image. We also apply FR(), ResNet’s convolution network, to the valida-

tion images, producing 2, 048 features per image. Finally, we apply the I→R

and R→I mapping functions described above, thereby creating F̃I = MR→IFR()

and F̃R = MI→RFI(). By applying CI() to FI() and F̃I() and applying CR() to220

FR() and F̃R() we can measure the similarity between Inception’s and ResNet’s

features.

Description Mapping Correct Percent Loss

Inception-v4 (I → I) 40,037 80.2

ResNet-v2 152 (R → R) 39,022 78.0

Inception-v4 to ResNet-v2 152 (I → R) 39,686 79.4 -1.4

ResNet-v2 152 to Inception-v4 (R → I) 37,866 75.7 4.5

Table 1: Comparison of mapped and unmapped network performance. The values indicate

the number of correctly labelled samples out of 50,000 on the ILSVRC2012 validation dataset

is shown along with the percent correct. For the bottom two with the affine mappings the

loss defined in Sect. 4 is shown.

5.1. Black Box Analysis

The central question of the paper is whether the features learned by Inception-

v4 and ResNet-v2 are equivalent. Table 1 shows the experimental results for225

mapping Inception features onto ResNet features (I→R) and vice-versa (R→I).

The Inception classifier correctly labels 40,037 validation images using its own

features FI(); using ResNet features mapped through R→I (i.e. F̃I()) it cor-

rectly labels 37,866 images. This is a loss of 4.5%. In the other direction, the

ResNet classifier correctly labels 39,022 validation images using its own features230

FR() and 39,686 images using Inception’s features mapped through I→R (i.e.

F̃R()). This is a gain, rather than a loss, of 1.4%.

This result strongly suggests that all the information in ResNet’s 2,048 fea-

tures is also contained in Inception’s 1,536 features. Otherwise, I→R could not

have learned a mapping with no loss. The result in the other direction involves235

12

some loss. In particular, the performance of Inception’s classifier drops by 4.5%

when it is given the mapped version of ResNet’s features. The most important

conclusion to draw is that much of the information required by Inception’s clas-

sifier is present in the ResNet features. Secondarily, this result also suggests that

Inception-v4, which is the higher performing of the two systems, may capture240

some information in its features that ResNet’s features miss.

5.2. Detailed Analysis

561
(1.1%)

1,649
(3.3%)

647
(1.3%)

412
(0.8%)

2,548
(5.1%)

445
(0.9%)

36,281
(72.6%)

Inception correct
40,037 (80.1%) ResNet correct

39,022 (78.0%)

I R correct
39,686 (79.4%)

Overlap of correct sample classification between
ResNet-v2, Inception-v4, and I R

I R exclusively correct
ResNet exclusively correct
I R and ResNet correct
Inception exclusively correct
I R and Inception correct
ResNet and Inception correct
All correct

Figure 5: Colored areas represent samples which were labeled correctly by ResNet (dotted cir-

cle), Inception (dashed circle), and ResNet’s classifier using Inception’s features (solid circle).

Each of the three circles represents one of these three variants correctly classified samples.

I→R is shown with the solid circle, Inception dashed, and ResNet dotted. The innermost

region (mauve) is scaled down by a factor of 10 for readability; all other areas are to scale.

For further analysis, we divide the set of correctly labeled samples into three

categories: those correctly labeled by ResNet, those labeled correctly by In-

ception, and those labeled correctly by ResNet’s classifier based on Inception’s245

mapped features (i.e. CR(MI→RFI()). These sets are shown in Fig. 5. By

13

overlapping each category, we can observe which correct classifications are ei-

ther common or novel to each network. The mauve innermost region represents

those images that are correctly classified by Inception, ResNet and the I→R

mapping. This is reflective of the general performance success in Table 1. The250

yellow region, however, represents images that are correctly labeled by Incep-

tion and mislabeled by ResNet, but that are somehow correctly classified by

ResNet’s classifier when given I→R mapped Inception features. Since we did

not retrain ResNet’s classifier, it presumably cannot take advantage of infor-

mation that was not present in ResNet’s features. Yet for the 10,978 images255

that ResNet misclassifies, replacing ResNet’s features with mapped Inception

features “fixes” 2,960 of them so that they get the right label. This suggests

that ResNet and Inception are extracting qualitatively the same image features

(because the ResNet classifier exploits them), but that Inception’s features are

somehow more robust.260

6. Conclusion

Linear mappings can be constructed between Inception and ResNet features

with relatively little penalty in classification accuracy. The mapping from In-

ception features to ResNet features creates no drop in recognition accuracy, in

fact there is a gain. This suggests that all the information contained in ResNet265

features is also contained in Inception features, and that Inception may extract

information of value to the ResNet classifier slightly better than ResNet it-

self does. This hypothesis is consistent with the observation that mapping from

ResNet features to Inception features creates a small but significant (4.5%) drop

in performance. This could either be because Inception captures a few image270

features that are not captured by ResNet, or because (as in the other mapping)

Inception captures the same features only “better”.

We looked for equivalence between ResNet and Inception features to see

whether they capture different but roughly equally discriminative information,

or whether they actually extract the same information, just using a different275

14

architecture and encoding to do it. The findings suggest that the two networks

are, in fact, extracting qualitatively the same features. We speculate that this

may have implications for other convolutional nets as well. As nets grow more

complex, there may be a law of diminishing returns if they all end up extracting

similar features, but that may be what happens because that is what the training280

data supports.

References

[1] Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network

dissection: Quantifying interpretability of deep visual representations. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-285

nition, pages 6541–6549.

[2] Dosovitskiy, A. and Brox, T. (2016). Inverting visual representations with

convolutional networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4829–4837.

[3] Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing290

higher-layer features of a deep network. University of Montreal, 1341(3):1.

[4] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature

hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 580–587.295

[5] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In

Proceedings of the IEEE international conference on computer vision, pages

2961–2969.

[6] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision300

and pattern recognition, pages 770–778.

15

[7] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep

residual networks. In European conference on computer vision, pages 630–645.

Springer.

[8] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017).305

Densely connected convolutional networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4700–4708.

[9] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167.310

[10] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980.

[11] Kornblith, S., Shlens, J., and Le, Q. V. (2018). Do better imagenet models

transfer better? arXiv preprint arXiv:1805.08974.

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet clas-315

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105.

[13] Lenc, K. and Vedaldi, A. (2019). Understanding image representations

by measuring their equivariance and equivalence. International Journal of

Computer Vision, 127(5):456–476.320

[14] Li, G. and Yu, Y. (2016). Visual saliency detection based on multiscale deep

cnn features. IEEE Transactions on Image Processing, 25(11):5012–5024.

[15] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L.,

Yuille, A., Huang, J., and Murphy, K. (2018). Progressive neural architec-

ture search. In Proceedings of the European Conference on Computer Vision325

(ECCV), pages 19–34.

[16] Liu, F., Lin, G., and Shen, C. (2015). Crf learning with cnn features for

image segmentation. Pattern Recognition, 48(10):2983–2992.

16

[17] Narayana, P., Beveridge, R., and Draper, B. A. (2018). Gesture recognition:

Focus on the hands. In Proceedings of the IEEE Conference on Computer330

Vision and Pattern Recognition, pages 5235–5244.

[18] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in

neural information processing systems, pages 91–99.

[19] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,335

Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large

scale visual recognition challenge. International journal of computer vision,

115(3):211–252.

[20] Silberman, N. and Guadarrama, S. (2016). Tensorflow-slim image classifi-

cation model library.340

[21] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convo-

lutional networks: Visualising image classification models and saliency maps.

arXiv preprint arXiv:1312.6034.

[22] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-

v4, inception-resnet and the impact of residual connections on learning. In345

Thirty-First AAAI Conference on Artificial Intelligence.

[23] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,

D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolu-

tions. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1–9.350

[24] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016).

Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

2818–2826.

17

[25] Zeiler, M. D., Taylor, G. W., Fergus, R., et al. (2011). Adaptive deconvolu-355

tional networks for mid and high level feature learning. In ICCV, number 2,

page 6.

18

	Introduction
	Related Work
	Background
	ResNet
	Inception

	Methodology
	Features
	Fitting Affine Maps
	Evaluating Mappings

	Results
	Black Box Analysis
	Detailed Analysis

	Conclusion

