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Abstract— As HPC capability and software adaptability 
continues to expand, the interest to perform complex system-
wide simulations involving multiple interacting components 
grows.  In this paper, we present a novel integrative software 
platform – the Distributive Interoperable Executive Library 
(DIEL) - to facilitate the collaboration, exploration, and 
execution of multiphysics modeling projects suited for a 
diversified research community on emergent large-scale parallel 
computing platforms. It does so by providing a managing 
executive, a layer of numerical libraries, a number of commonly 
used physics modules, and two set of native communication 
protocols. DIEL allows users to plug in their individual modules, 
prescribe the interactions between those modules, and schedule 
communications between them. The DIEL framework is designed 
to be applicable for preliminary concept design, sensitivity 
prototyping, and productive simulation of a complex system. 

Keywords—Workflow; Framework; Parallel Computing; 
Multiphysics Simulation 

I. INTRODUCTION  
In 1999, the fastest computer in the world could barely reach 
one TeraFLOPS. Then came the Earth-Simulator, which 
dominated the Top500 [1] list for the next three years, 
performing at 33 TeraFLOPS. In just a decade, the number 
one computer in the 2013 top500 list reached a performance of 
33 PetaFLOPS, a whopping 1000 fold of performance 
increase! More importantly, TFLOPS-scale computers are 
now considered as commodity machines and are commonly 
available in the US.  Fueled by such a leaping gain in 
computational capability, the last decade also represents a 
golden era of physics-based software renaissance. 
Recognizing the ability to perform complex multiphysics 
simulations on parallel computers, many software tools have 
been built to manage the interactions dictated by a mixture of 
independent scientific components. 
 
 In concert with the technological renovation of computer 
architectures there also appeared the maturity of a number of 
numerical algorithms and packages in solving large systems of 
dense and sparse equations on petascale supercomputers. 
These packages and toolsets such as ScaLAPACK [2], PETSc 
[3], and Trilinos [4] have been the backbones of many 

scientific software developments. Taking advantage of object 
oriented abstractions, equation-based problem solving 
environments capable to encapsulate mathematical operators 
in differential or integral equations, such as Diffpack [5], 
OVERTURE [6], and DEALII [7] were developed to solve 
PDE systems using finite difference, finite volume, and finite 
element methods.  
 
As software adaptability for single-purpose application codes 
continues to grow, to combine and reuse these individual 
proven software units applied to system-wide applications 
becomes apparent. The climate community has been the 
leading authority in its development of CCSM and later 
CESM [8] component-based climate models. CCA [9] was an 
effort to sew together different software components for large-
scale system-wide simulations on HPC platforms. To 
anticipate an exascale computer by the end of this decade, the 
US DOE has increased its investment in software framework 
infrastructure critical to the success of building next 
generation energy sources. The Multiphysics Object Oriented 
Simulation Environment framework, MOOSE [10], provides a 
software platform to integrate a suite of independent 
application codes for nuclear reactor simulations. To improve 
the convergent properties of loosely interacting physics code 
executing under a unified framework, CouPE [11] (Coupled 
Physics Environment) is built with a number of coupling 
schemes to enhance the connection between individual 
physics modules via interfaces to MOAB [12] and PETSc. 

Following the rise of domain specific computational 
frameworks, a number of open source scientific workflow 
engines also emerged. The Pegasus project [23] has a large 
pool of tools that enables scientists to construct workflows for 
their simulations in abstract terms without worrying about the 
details of the underlying execution environment on multiple 
distributed resources. Swift [24] is designed to let users 
specify, execute, and manage their large-scale science and 
engineering simulations rapidly through a simple scripting 
language. It supports applications that execute many tasks 
concurrently, particularly suited for analyzing large quantities 
of data in ensemble simulations. 



 
The Distributive Interoperable Executive Library (DIEL) is a 
lightweight software framework for simulating system-wide 
scientific applications by combining different interoperable 
computational components.  Similar to many existing large 
scale multiphysics frameworks developed under DOE 
initiatives, DIEL is capable of admitting and running many 
existing users’ codes on high performance computers. To sew 
these codes together, DIEL provides two unique protocols for 
communication: a direct space exchange unit (DSU) and a 
tuple space exchange unit (TSU). These units are designed to 
facilitate transferring and storing data across the memory 
space on a large-scale supercomputer, depending on the nature 
of the simulation using DSU for deterministic type of 
exchanges or TSU for stochastic type of exchanges. 

 
DIEL shares a few similar features of Swift and Pegasus, 
primarily in the management of the execution and data 
movements of layers of modular software components. This 
framework, however, is tailored towards conducting multi-
disciplinary research on supercomputers, providing a unified 
cradle to attain scalable computational performance. It is built 
with the capacity to collect and assimilate data warranted for 
new scientific frontiers, resulting in shorter, smarter process 
cycles and significant cost savings.  
 
The DIEL framework is designed to be an integrated, 
community-driven, non-proprietary capability that follows an 
agile development process allowing users to efficiently 
validate, verify, maintain, and expand new computational 
models, algorithms, analytics, and tools. Fig. 1 shows a 
functional block diagram of DIEL. The managing core 
(EXECUTIVE) and the communication units (COMMLIB) are 
the critical building blocks of DIEL. These are interconnected 
with an integrator of numerical libraries and an interface for 
tools. An analyzer module performs data analytics, sensitivity 
analysis, and parametric optimization during the life cycle of a 
simulation. The multiphysics models are distinct computer 
codes implemented by users to perform their simulations. By 
leveraging this framework, a biomedical heart-lung simulation 
is built to showcase the functionalities and the interacting 
workflow managed in DIEL.  

  
 

Fig. 1: Functional organization blocks of DIEL 

 

II. ORGANIZATION OF DIEL 

A.  Design 
The development and initial conception of DIEL began in 
2010, starting as a software framework to organize the 
workflow for thermal fluid flow problems. The principal 
design criteria are two fold - to allow many units of parallel 
codes running seamlessly under a unified executable and to 
allow these individual programs to exchange data specified by 
the user; and a simple efficient engine aimed to utilize the 
capabilities and resources of large scale supercomputers. The 
resulting product is a lightweight interoperable executive 
library built on top of the MPI library. The global 
MPI_COMM_WORLD communicator is split into many sub-
communicators and scattered across separate units of physics 
codes (modules). A wrapper for the direct communication 
library, DSU, is built to exchange information between these 
multiple physics modules. 
 
Fig. 2 illustrates the DIEL software framework. It executes 
and schedules, in parallel, a series of solvers or modules.  
The DIEL is composed of three major components: the 
Configuration File, the Communicator Library, and the 
Executive. The Driver, shown in Fig. 3, defines the workflow 
and functionality of a user’s simulation. The second 
component is the Communicator Library (COMMLIB), which 
is built as a wrapper for the Message Passing Interface (MPI) 
and handles the transfer of the data on the shared boundaries 
between modules. The third component is the Executive, 
which schedules and manages the workflow of a set of tasks 
prescribed in the configuration file. A user-specific Driver 
program initiates the computation by passing a Configuration 
File to the executive, which organizes and runs the sequence 
of a simulation. The DIEL can run multiple parallel 
computational tasks concurrently or in sequence on large scale 
computing platforms such as Darter (Cray XC30) and Kraken 
(Cray XT5) at the National Institute for Computational 
Sciences (NICS). 
 

  
Fig. 2: Design of DIEL 
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B. Workflow of DIEL 
The Driver is the unit scheduling the simulation and provides 
the means for the user to manage the sequences of a complex 
system-wide simulation. The driver works by loading modules 
as external libraries and initiating execution using the 
functions provided by the Executive. The Executive arranges 
and defines array structures for the data given in the 
configuration file. The Executive then takes control of the 
assigned tasks, executes them accordingly, and coordinates the 
communication among them through the Communicator 
Library. An example of the workflow and execution of a 
simple driver program is illustrated in Fig. 3. In this figure a 
parallel simulation is initialized, then two modules generate 
multiple combinations of modules and configuration files. 
Execution of a simulation does not have to occur in a parallel 
fashion, but can instead be integrated inside control structures, 
such as loops or if statements, providing control over 
parameters and input data. 
 
The user-defined configuration file, shown in Fig. 4, is passed 
into the Executive at runtime and provides all of the necessary 

 

 
 
Fig. 3: Typical driver code of DIEL 
 
 

 
 
Fig. 4: Example of a configuration file of DIEL 
 

 
information for the simulation. One of the primary data fields 
provides information on the shared boundary points specifying 
the size of boundaries shared between modules. Also listed in 
the configuration file are the input arguments, the number of 
processes requested, the library type, and the desired per 
module memory size of the shared boundary data of each 
module. This allows the Executive to pre-allocate memory and 
distribute data accordingly. The configuration file provides the 
means to define the data and tasks for a simulation in an easily 
readable text-based format. Because the Configuration File 
and Executive support multiple module execution, the same 
module can be called many times during one execution with or 
without shared boundary points. In addition multiple 
configuration files can also be used. The DIEL package is 
organized in four major sections: the DIEL core libraries, the 
drivers, the third-party mathematical and scientific libraries, 
and the use cases.  
 
A number of numerical libraries are incorporated to facilitate 
users to build scalable module codes adapted to DIEL. As an 
example, Trilinos is extensively used in the solver for the 
following use case simulation. The suites of dense linear 
solver, particularly ScaLAPACK and MAGMA [13], 
developed by the ICL group at the University of Tennessee, 
are available. To facilitate code migration, a unified interface 
is developed to encapsulate some of the typical functions 
available on both GPUs and the Intel many-core coprocessors.  
 

C. Communication Interfaces 
The coupling between two individual codes is based on the 
description of their shared array boundaries written in the 
configuration file. The Configuration File, shown in Fig. 4, 
defines the functionality of each simulation, the number of 
shared boundary conditions between different modules, and 
the number of processors that are assigned for parallel 
computation. Each module is defined by its name, library type, 
input data, and a set of shared boundary points. These shared 
boundary points, assuming they are joined geometrically, are 
generated by a mesh preprocessing code and written to a 
single ASCII file.  
 
The COMMLIB is the interface between processes for data 
communication. After execution of the function 
IEL_exec_init() - reading in the shared boundary conditions 
and initializing communication data structures containing 
information about the entire IEL, each specific module, and 
the data handles specified between modules - the necessary 
module libraries are loaded and the user-specified 
communication begins. The client processes are then free to 
use either of the two communication methods as they see fit 
for their specific needs.  
 
The first method is direct communication, DSU, facilitated 
using the shared boundaries specified by the user in the 
configuration file as gathered by the Executive and the MPI 
wrapper functions IEL_put(module info, handle info, data) 



and IEL_get(module info, handle info, data). In those two 
functions, the user simply passes a description of the module 
to exchange data, a description of the data to be exchanged, 
and a buffer to exchange data from or to. The function then 
finds and verifies the boundary where data is to be exchanged 
and directly exchanges said data between processes using a 
non-blocking MPI send (put) and a blocking MPI receive (get) 
function call. It is necessary that each call for IEL_put() be 
matched by a respective IEL_get() on the receiving process, 
leaving this direct style strictly synchronous. This method is 
tested on both small-scale machines and large-scale 
supercomputers such as Kraken and Darter.  
 
The second option of communication is an indirect, cloud-
style communication using a tuple space, TSU. In contrast to 
direct communication, the client is free to exchange data with 
a shared space using a dedicated communication server, rather 
than wait on the possibly busy destination process to reach its 
communication calls or manage the memory itself using one-
way MPI function calls. The tuple space code works by using 
a combination of three functions: a IEL_tuple_server(), 
IEL_tput(size, tag, data), and IEL_tget(). An illustration of the 
current tuple space communication is shown in Figure 5b. 
 
A tuple space is a delocalized collection of tuples that can be 
committed to access concurrently [14]. It is implemented 
through a dynamic data structure in memory where users can 
add to and retrieve from using a certain identification system. 
Many implementations have been developed in languages 
such as Java (JavaSpaces) [15] and Linda [14]. A similar style 
of one-sided delocalized communication exists in Unified 
Parallel C (UPC) [16] and is available in modern MPI 
implementations [17]. The DIEL’s implementation differs 
from strictly one-sided communication by using a tuple server 
to coordinate communication, association, and memory 
management. The DataSpaces architecture—a programming 
system for coordinated scientific applications—is a similar 
implementation of the distributed tuple-space communication 
layer for interfacing applications [18]. 
 
As seen in Fig 6, the IEL_tuple_server() function, started 
currently by the client code running only on rank 0, operates 
first by initializing a doubly-linked list to serve as a tuple 
space and then enters a communication loop in which it 
searches for communication requests or handshakes. When a 
handshake is found, the function then executes the respective 
communication with the client process before returning to 
additional search for handshakes. In the IEL_tput() function, 
the user passes the size of the data to be exchanged, a unique 
tag to identify the data, and a buffer containing the data to be 
committed to the tuple space. In the IEL_tget() function, the 
user passes the tag of the data desired from the space, and two 
buffers to have the data and size written to.  
 
In order to create a fully modular system, the tuple space is 
converted into a DIEL module like any other. This way, the 
tuple space can be swapped with a modified version or 
entirely new implementation without having to recompile the 

 
 
Figure 5: Communication Interfaces of DIEL, left (a), middle (b), right (c). 
 
 

 
 
Figure 6: Schematic diagram of tuple space communication in DIEL. 
 
DIEL. Other module processes should be able to use a hash 
function to discover the proper server for a specific tuple, 
creating a distributed hash table from the tuple servers. The 
input to the hash function should be the associativity data for 
the tuple, which should correspond to the shared boundary 
conditions defined in the configuration file. This concept of 
implementation is illustrated in Fig. 5c. 
  

D. Performance Test 
The DIEL is capable of running multiple copies of serial or 
parallel codes concurrently on a large-scale supercomputer. 
An API is built to assist the transformation of a users’ serial or 
parallel code to conform to the modular format of the DIEL 
and the generation of the needed configuration file. Fig. 7 
shows a weak scaling performance curve of DIEL running 
multiple instances of the same physics code on Kraken. Each 
instance of the code uses 32 processes and is treated as an 
individual physics component (module). The graph compares 
the average total runtime using DIEL to the runtime of the 
base code. The performance of DIEL scales well up to 128 
instances (4096 processes), when the overhead of DIEL 
becomes significant.  
 



 

 
 
Figure 7: Weak scaling performance of running multiple copies of same 
physics code. 
 
A randomized test to stress the performance of the TSU is also 
performed. We ran this test with 16 tuple servers and 256 
modules processes on Darter. After 40 trials, the tuple servers 
collectively fulfill an average of 9.6 million tget/tput requests 
per trials. Every request is fulfilled correctly. It takes an 
average of 7.5 seconds to complete, with no obvious outliers.  
 
A fan test is used to compare the performance of the TSU 
against MPI function calls. In the fan test, process 0 
broadcasts n different messages, with n being the “fan size” or 
the number of broadcast processes. Two cases are computed, a 
messages size of 4 Bytes shown in Fig. 8, and 4 Kbytes shown 
in Fig. 9. For the “MPI_Send/MPI_Recv” and “tput/tget full” 
cases, process 0 sends these messages to n different threads, 
which then sends back a response message. The total number 
of messages passed for these cases is twice the fan size times 
1,000. For the “tput/tget half” case, the test puts n different 
tuples to the server with n calls to IEL_tput(), and then gets 
them all back with n calls to IEL_tget(). Again, this process is 
repeated 1,000 times for each run. 
 
 
 

 
 

Figure 8: Comparison of performance of MPI and TSU in the fan test.  
 

 
 
Figure 9: Comparison of performance of MPI and TSU in the fan test. 
 
In Fig. 9, the “tput/tget full” of the fan size of 2048 runs out of 
memory before completing, indicated by “0” time on the 
graph. From these tests, exchanging data via TSU is not 
scalable beyond 256 processes or more appropriate units of 
concurrent computation. In a system-wide multiphysics 
simulation, each computational unit may consist of many 
parallel processes but handled only by a single tuple unit of 
communication.  
 

III. USE CASE EXAMPLES 

A. Ising Model 
The Ising Model is a mathematical model used to quantify the 
energy, magnetization, and heat capacity of atomic particles. 
In this calculation, the range of temperatures is decomposed 
evenly and assigned to a process. Each process then uses 
Markov Chain Monte Carlo methods to approximate the 
distribution using the replica exchange method [22]. Fig. 10 
shows the cost of the Ising model using the TSU to perform 
millions of small data exchanges.  
 

 
 

Figure 10: Performance of small data exchanges in the Ising model. 



The Base Case is the time it takes when all the exchanges are 
done with MPI_Send and MPI_Irecv. The Many-1 case is 
when all the data exchanges are done with a single tuple 
server. The Many-16 case utilizes 16 tuple servers to perform 
the same number of exchanges, with messages being put to the 
servers in a round-robin fashion. The size of the data for each 
exchange is 3 integers and 7 doubles. The total number of 
exchanges for each run is 2 times the number of threads times 
10,000. 
 

B. Sphere Packing Model 
The sphere packing code is an example used to demonstrate a 
typical way to use DIEL. Given a string of P spheres of radius 
1, a string of Q spheres of radius 1, and a cylinder of radius R, 
the goal is to wrap the strings of spheres around the cylinder 
so that the centers of the final spheres in each string match up 
perfectly, forming a ring around the cylinder, illustrated in 
Fig. 11. Given P and Q (the lengths of the strings), the radius 
of the cylinder and the height difference between the spheres 
in the string are solved using a genetic algorithm. The code is 
divided into two loosely coupled DIEL modules. One module 
takes in sets of parameters and calculates the distance between 
the final sphere centers (the fitness function). The other 
module takes in sets of parameters and fitness functions, and 
creates new sets of parameters based on linear combinations 
of the fittest ”parents”. These modules communicate through 
tuple communication, which allows flexibility to perform 
multiple simulations concurrently. For example, one can run 
several different sphere packing algorithms with different 
strings of spheres, and run any number of copies of the genetic 
algorithm to generate parameters. Fig. 12 shows the workflow 
where multiple copies of the sphere packing algorithm are 
computed, but only one copy of the genetic algorithm. The 
genetic algorithm module receives any population that is ready 
to be processed, as soon as it has been put in the tuple space. 
In addition, several identical copies of the sphere packing 
algorithm can be run concurrently.  
 

 
 
 
Figure 11:Schmatic diagram of the sphere packing algorithm. 
 

 
 
Figure 12:Workflow of the sphere packing simulation. 
 

C. Cardiac Model 
Cardiovascular disease is the leading cause of death in 
America. Computer simulation and visualization of the 
complicated dynamics of the heart have great potential to 
provide quantitative guidance for diagnosis and treatment of 
heart problems. There have been intensive research efforts on 
developing accurate computer models to advance the 
understanding of the mechanisms of cardiovascular dynamics. 
To demonstrate the viability and functionalities of DIEL, we 
have illustrated the workflow of a heart simulation is 
illustrated in the Fig. 13.  
 
Heartbeats are the result of a sequence of electrochemical 
excitation waves that are initiated from the sinoatrial node. 
The electrical impulses induce intracellular calcium cycling, 
which in turn causes heart muscles to contract. This process, 
known as excitation-contraction coupling (ECC), is essential 
to the functioning of a healthy heart. On the other hand, 
mechanical changes that respond to neural and hormonal 
influences also impact the electrical properties of the heart. 
When a part of the heart tissue is stimulated, the induced 
action-potential propagates out, making the tissue contract. 
Such action is controlled by a given set of Kirchoff stress 
parameters and stress activated ion channels. The fluid flow 
pattern in the deformed ventricle is governed by the Navier 
Stokes equations and will be solved by an in-house multi-
purpose finite element code [19]. 
 

  
 
Figure 13: Workflow of a cardiac simulation using DIEL. 
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The biomechanical module is governed by a reaction–
diffusion equation describing the propagating potential and an 
equilibrium equation describing the stress field [20]. 
Moreover, the electrical potential involves dozens of ODEs 
governing variations of various ionic concentrations and gate 
variables.  
 
The interaction between the biomechanical and fluid modules 
requires regenerating an internal flow mesh during the course 
of the simulation. Reconstructing the changed mesh utilizing 
the Gmsh library [21] is used to reconstruct the new mesh. 
The Gmsh library is capable of generating internal 
unstructured tetrahedron meshes based on defined surfaces. 
  

IV. CONCLUSION AND FUTURE WORK 
 
The DIEL has given users the ability to run multiple sets of 
serial and parallel code concurrently on a supercomputer. It 
allows the management of workflow to be specified in an 
input file. Two interfaces of communication functions are 
built to accommodate the transfer of data in deterministic or 
stochastic manners.  The presented DIEL framework is 
designed to be portable across many computing platforms that 
are commonly used for simulating many multiphysics 
problems.  
 
As we work to expand the scope of this framework, we will 
encompass non-geometrical association written to a binary 
HDF5 file and XML file that can be taken in by DIEL in 
parallel. We are also working to extend and improve the 
performance of current algorithms for tuple space 
communication. The viability of a mixture of multi-
component physics-based code depends on the convergent 
property of their couplers. We will examine various numerical 
schemes and leverage the first-hand experiences from the 
researchers at other institutions to organize a set of coupling 
techniques in DIEL. Although dynamic runtime task analysis 
and scheduling can sometimes greatly enhance the 
performance of a set of loosely connected codes, it will only 
be considered in some specific cases when the needs from the 
user community is significant.  
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