
Distributive Interoperable Executive Library (DIEL)
for Systems of Multiphysics Simulation

Kwai Wong and Logan Brown
Joint Institute for Computational Sciences

University of Tennessee
Knoxville, TN 37996, USA

kwong@utk.edu
lbrown60@vols.utk.edu

Jason Coan and David White
Department of Computer Science

Maryville College
Maryville, TN 37996, USA

david.white@my.maryvillecollege.edu
Jason.coan@my.maryvillecollege.edu

Abstract— As HPC capability and software adaptability
continues to expand, the interest to perform complex system-
wide simulations involving multiple interacting components
grows. In this paper, we present a novel integrative software
platform – the Distributive Interoperable Executive Library
(DIEL) - to facilitate the collaboration, exploration, and
execution of multiphysics modeling projects suited for a
diversified research community on emergent large-scale parallel
computing platforms. It does so by providing a managing
executive, a layer of numerical libraries, a number of commonly
used physics modules, and two set of native communication
protocols. DIEL allows users to plug in their individual modules,
prescribe the interactions between those modules, and schedule
communications between them. The DIEL framework is designed
to be applicable for preliminary concept design, sensitivity
prototyping, and productive simulation of a complex system.

Keywords—Workflow; Framework; Parallel Computing;
Multiphysics Simulation

I. INTRODUCTION
In 1999, the fastest computer in the world could barely reach
one TeraFLOPS. Then came the Earth-Simulator, which
dominated the Top500 [1] list for the next three years,
performing at 33 TeraFLOPS. In just a decade, the number
one computer in the 2013 top500 list reached a performance of
33 PetaFLOPS, a whopping 1000 fold of performance
increase! More importantly, TFLOPS-scale computers are
now considered as commodity machines and are commonly
available in the US. Fueled by such a leaping gain in
computational capability, the last decade also represents a
golden era of physics-based software renaissance.
Recognizing the ability to perform complex multiphysics
simulations on parallel computers, many software tools have
been built to manage the interactions dictated by a mixture of
independent scientific components.

 In concert with the technological renovation of computer
architectures there also appeared the maturity of a number of
numerical algorithms and packages in solving large systems of
dense and sparse equations on petascale supercomputers.
These packages and toolsets such as ScaLAPACK [2], PETSc
[3], and Trilinos [4] have been the backbones of many

scientific software developments. Taking advantage of object
oriented abstractions, equation-based problem solving
environments capable to encapsulate mathematical operators
in differential or integral equations, such as Diffpack [5],
OVERTURE [6], and DEALII [7] were developed to solve
PDE systems using finite difference, finite volume, and finite
element methods.

As software adaptability for single-purpose application codes
continues to grow, to combine and reuse these individual
proven software units applied to system-wide applications
becomes apparent. The climate community has been the
leading authority in its development of CCSM and later
CESM [8] component-based climate models. CCA [9] was an
effort to sew together different software components for large-
scale system-wide simulations on HPC platforms. To
anticipate an exascale computer by the end of this decade, the
US DOE has increased its investment in software framework
infrastructure critical to the success of building next
generation energy sources. The Multiphysics Object Oriented
Simulation Environment framework, MOOSE [10], provides a
software platform to integrate a suite of independent
application codes for nuclear reactor simulations. To improve
the convergent properties of loosely interacting physics code
executing under a unified framework, CouPE [11] (Coupled
Physics Environment) is built with a number of coupling
schemes to enhance the connection between individual
physics modules via interfaces to MOAB [12] and PETSc.

Following the rise of domain specific computational
frameworks, a number of open source scientific workflow
engines also emerged. The Pegasus project [23] has a large
pool of tools that enables scientists to construct workflows for
their simulations in abstract terms without worrying about the
details of the underlying execution environment on multiple
distributed resources. Swift [24] is designed to let users
specify, execute, and manage their large-scale science and
engineering simulations rapidly through a simple scripting
language. It supports applications that execute many tasks
concurrently, particularly suited for analyzing large quantities
of data in ensemble simulations.

The Distributive Interoperable Executive Library (DIEL) is a
lightweight software framework for simulating system-wide
scientific applications by combining different interoperable
computational components. Similar to many existing large
scale multiphysics frameworks developed under DOE
initiatives, DIEL is capable of admitting and running many
existing users’ codes on high performance computers. To sew
these codes together, DIEL provides two unique protocols for
communication: a direct space exchange unit (DSU) and a
tuple space exchange unit (TSU). These units are designed to
facilitate transferring and storing data across the memory
space on a large-scale supercomputer, depending on the nature
of the simulation using DSU for deterministic type of
exchanges or TSU for stochastic type of exchanges.

DIEL shares a few similar features of Swift and Pegasus,
primarily in the management of the execution and data
movements of layers of modular software components. This
framework, however, is tailored towards conducting multi-
disciplinary research on supercomputers, providing a unified
cradle to attain scalable computational performance. It is built
with the capacity to collect and assimilate data warranted for
new scientific frontiers, resulting in shorter, smarter process
cycles and significant cost savings.

The DIEL framework is designed to be an integrated,
community-driven, non-proprietary capability that follows an
agile development process allowing users to efficiently
validate, verify, maintain, and expand new computational
models, algorithms, analytics, and tools. Fig. 1 shows a
functional block diagram of DIEL. The managing core
(EXECUTIVE) and the communication units (COMMLIB) are
the critical building blocks of DIEL. These are interconnected
with an integrator of numerical libraries and an interface for
tools. An analyzer module performs data analytics, sensitivity
analysis, and parametric optimization during the life cycle of a
simulation. The multiphysics models are distinct computer
codes implemented by users to perform their simulations. By
leveraging this framework, a biomedical heart-lung simulation
is built to showcase the functionalities and the interacting
workflow managed in DIEL.

Fig. 1: Functional organization blocks of DIEL

II. ORGANIZATION OF DIEL

A. Design
The development and initial conception of DIEL began in
2010, starting as a software framework to organize the
workflow for thermal fluid flow problems. The principal
design criteria are two fold - to allow many units of parallel
codes running seamlessly under a unified executable and to
allow these individual programs to exchange data specified by
the user; and a simple efficient engine aimed to utilize the
capabilities and resources of large scale supercomputers. The
resulting product is a lightweight interoperable executive
library built on top of the MPI library. The global
MPI_COMM_WORLD communicator is split into many sub-
communicators and scattered across separate units of physics
codes (modules). A wrapper for the direct communication
library, DSU, is built to exchange information between these
multiple physics modules.

Fig. 2 illustrates the DIEL software framework. It executes
and schedules, in parallel, a series of solvers or modules.
The DIEL is composed of three major components: the
Configuration File, the Communicator Library, and the
Executive. The Driver, shown in Fig. 3, defines the workflow
and functionality of a user’s simulation. The second
component is the Communicator Library (COMMLIB), which
is built as a wrapper for the Message Passing Interface (MPI)
and handles the transfer of the data on the shared boundaries
between modules. The third component is the Executive,
which schedules and manages the workflow of a set of tasks
prescribed in the configuration file. A user-specific Driver
program initiates the computation by passing a Configuration
File to the executive, which organizes and runs the sequence
of a simulation. The DIEL can run multiple parallel
computational tasks concurrently or in sequence on large scale
computing platforms such as Darter (Cray XC30) and Kraken
(Cray XT5) at the National Institute for Computational
Sciences (NICS).

Fig. 2: Design of DIEL

Mul$physics+Modules+
• "Structural"
• "Thermal"
• "Fluid,"materials"
• "Chemical,"biological"

DIEL+COMMLIB+
• "Message"
• "Direct"Comm"
• "Memory"Handle"
• "Tuple"Space"Comm"

DIEL+Execu$ve+
• "Data"
• "Memory"
• "Work"Process"
• "Communicator"

Tools+Interfaces+
• "I/O"
• "Tools,"Imager"
• "PreC/PostC"processing""
• "HPC"tools"

Numerical++Integrator+
• "Data"representaDon"
• "Solvers"
• "Methods"
• "Math"iterator,"coupler"

Driver+:+User+Defined+Workflow+++
"

+Data+Analyzer+
• "OpDmizer"
• "Profiler"
• "Analysis"Methods"
• "DAKOTA,"R"

B. Workflow of DIEL
The Driver is the unit scheduling the simulation and provides
the means for the user to manage the sequences of a complex
system-wide simulation. The driver works by loading modules
as external libraries and initiating execution using the
functions provided by the Executive. The Executive arranges
and defines array structures for the data given in the
configuration file. The Executive then takes control of the
assigned tasks, executes them accordingly, and coordinates the
communication among them through the Communicator
Library. An example of the workflow and execution of a
simple driver program is illustrated in Fig. 3. In this figure a
parallel simulation is initialized, then two modules generate
multiple combinations of modules and configuration files.
Execution of a simulation does not have to occur in a parallel
fashion, but can instead be integrated inside control structures,
such as loops or if statements, providing control over
parameters and input data.

The user-defined configuration file, shown in Fig. 4, is passed
into the Executive at runtime and provides all of the necessary

Fig. 3: Typical driver code of DIEL

Fig. 4: Example of a configuration file of DIEL

information for the simulation. One of the primary data fields
provides information on the shared boundary points specifying
the size of boundaries shared between modules. Also listed in
the configuration file are the input arguments, the number of
processes requested, the library type, and the desired per
module memory size of the shared boundary data of each
module. This allows the Executive to pre-allocate memory and
distribute data accordingly. The configuration file provides the
means to define the data and tasks for a simulation in an easily
readable text-based format. Because the Configuration File
and Executive support multiple module execution, the same
module can be called many times during one execution with or
without shared boundary points. In addition multiple
configuration files can also be used. The DIEL package is
organized in four major sections: the DIEL core libraries, the
drivers, the third-party mathematical and scientific libraries,
and the use cases.

A number of numerical libraries are incorporated to facilitate
users to build scalable module codes adapted to DIEL. As an
example, Trilinos is extensively used in the solver for the
following use case simulation. The suites of dense linear
solver, particularly ScaLAPACK and MAGMA [13],
developed by the ICL group at the University of Tennessee,
are available. To facilitate code migration, a unified interface
is developed to encapsulate some of the typical functions
available on both GPUs and the Intel many-core coprocessors.

C. Communication Interfaces
The coupling between two individual codes is based on the
description of their shared array boundaries written in the
configuration file. The Configuration File, shown in Fig. 4,
defines the functionality of each simulation, the number of
shared boundary conditions between different modules, and
the number of processors that are assigned for parallel
computation. Each module is defined by its name, library type,
input data, and a set of shared boundary points. These shared
boundary points, assuming they are joined geometrically, are
generated by a mesh preprocessing code and written to a
single ASCII file.

The COMMLIB is the interface between processes for data
communication. After execution of the function
IEL_exec_init() - reading in the shared boundary conditions
and initializing communication data structures containing
information about the entire IEL, each specific module, and
the data handles specified between modules - the necessary
module libraries are loaded and the user-specified
communication begins. The client processes are then free to
use either of the two communication methods as they see fit
for their specific needs.

The first method is direct communication, DSU, facilitated
using the shared boundaries specified by the user in the
configuration file as gathered by the Executive and the MPI
wrapper functions IEL_put(module info, handle info, data)

and IEL_get(module info, handle info, data). In those two
functions, the user simply passes a description of the module
to exchange data, a description of the data to be exchanged,
and a buffer to exchange data from or to. The function then
finds and verifies the boundary where data is to be exchanged
and directly exchanges said data between processes using a
non-blocking MPI send (put) and a blocking MPI receive (get)
function call. It is necessary that each call for IEL_put() be
matched by a respective IEL_get() on the receiving process,
leaving this direct style strictly synchronous. This method is
tested on both small-scale machines and large-scale
supercomputers such as Kraken and Darter.

The second option of communication is an indirect, cloud-
style communication using a tuple space, TSU. In contrast to
direct communication, the client is free to exchange data with
a shared space using a dedicated communication server, rather
than wait on the possibly busy destination process to reach its
communication calls or manage the memory itself using one-
way MPI function calls. The tuple space code works by using
a combination of three functions: a IEL_tuple_server(),
IEL_tput(size, tag, data), and IEL_tget(). An illustration of the
current tuple space communication is shown in Figure 5b.

A tuple space is a delocalized collection of tuples that can be
committed to access concurrently [14]. It is implemented
through a dynamic data structure in memory where users can
add to and retrieve from using a certain identification system.
Many implementations have been developed in languages
such as Java (JavaSpaces) [15] and Linda [14]. A similar style
of one-sided delocalized communication exists in Unified
Parallel C (UPC) [16] and is available in modern MPI
implementations [17]. The DIEL’s implementation differs
from strictly one-sided communication by using a tuple server
to coordinate communication, association, and memory
management. The DataSpaces architecture—a programming
system for coordinated scientific applications—is a similar
implementation of the distributed tuple-space communication
layer for interfacing applications [18].

As seen in Fig 6, the IEL_tuple_server() function, started
currently by the client code running only on rank 0, operates
first by initializing a doubly-linked list to serve as a tuple
space and then enters a communication loop in which it
searches for communication requests or handshakes. When a
handshake is found, the function then executes the respective
communication with the client process before returning to
additional search for handshakes. In the IEL_tput() function,
the user passes the size of the data to be exchanged, a unique
tag to identify the data, and a buffer containing the data to be
committed to the tuple space. In the IEL_tget() function, the
user passes the tag of the data desired from the space, and two
buffers to have the data and size written to.

In order to create a fully modular system, the tuple space is
converted into a DIEL module like any other. This way, the
tuple space can be swapped with a modified version or
entirely new implementation without having to recompile the

Figure 5: Communication Interfaces of DIEL, left (a), middle (b), right (c).

Figure 6: Schematic diagram of tuple space communication in DIEL.

DIEL. Other module processes should be able to use a hash
function to discover the proper server for a specific tuple,
creating a distributed hash table from the tuple servers. The
input to the hash function should be the associativity data for
the tuple, which should correspond to the shared boundary
conditions defined in the configuration file. This concept of
implementation is illustrated in Fig. 5c.

D. Performance Test
The DIEL is capable of running multiple copies of serial or
parallel codes concurrently on a large-scale supercomputer.
An API is built to assist the transformation of a users’ serial or
parallel code to conform to the modular format of the DIEL
and the generation of the needed configuration file. Fig. 7
shows a weak scaling performance curve of DIEL running
multiple instances of the same physics code on Kraken. Each
instance of the code uses 32 processes and is treated as an
individual physics component (module). The graph compares
the average total runtime using DIEL to the runtime of the
base code. The performance of DIEL scales well up to 128
instances (4096 processes), when the overhead of DIEL
becomes significant.

Figure 7: Weak scaling performance of running multiple copies of same
physics code.

A randomized test to stress the performance of the TSU is also
performed. We ran this test with 16 tuple servers and 256
modules processes on Darter. After 40 trials, the tuple servers
collectively fulfill an average of 9.6 million tget/tput requests
per trials. Every request is fulfilled correctly. It takes an
average of 7.5 seconds to complete, with no obvious outliers.

A fan test is used to compare the performance of the TSU
against MPI function calls. In the fan test, process 0
broadcasts n different messages, with n being the “fan size” or
the number of broadcast processes. Two cases are computed, a
messages size of 4 Bytes shown in Fig. 8, and 4 Kbytes shown
in Fig. 9. For the “MPI_Send/MPI_Recv” and “tput/tget full”
cases, process 0 sends these messages to n different threads,
which then sends back a response message. The total number
of messages passed for these cases is twice the fan size times
1,000. For the “tput/tget half” case, the test puts n different
tuples to the server with n calls to IEL_tput(), and then gets
them all back with n calls to IEL_tget(). Again, this process is
repeated 1,000 times for each run.

Figure 8: Comparison of performance of MPI and TSU in the fan test.

Figure 9: Comparison of performance of MPI and TSU in the fan test.

In Fig. 9, the “tput/tget full” of the fan size of 2048 runs out of
memory before completing, indicated by “0” time on the
graph. From these tests, exchanging data via TSU is not
scalable beyond 256 processes or more appropriate units of
concurrent computation. In a system-wide multiphysics
simulation, each computational unit may consist of many
parallel processes but handled only by a single tuple unit of
communication.

III. USE CASE EXAMPLES

A. Ising Model
The Ising Model is a mathematical model used to quantify the
energy, magnetization, and heat capacity of atomic particles.
In this calculation, the range of temperatures is decomposed
evenly and assigned to a process. Each process then uses
Markov Chain Monte Carlo methods to approximate the
distribution using the replica exchange method [22]. Fig. 10
shows the cost of the Ising model using the TSU to perform
millions of small data exchanges.

Figure 10: Performance of small data exchanges in the Ising model.

The Base Case is the time it takes when all the exchanges are
done with MPI_Send and MPI_Irecv. The Many-1 case is
when all the data exchanges are done with a single tuple
server. The Many-16 case utilizes 16 tuple servers to perform
the same number of exchanges, with messages being put to the
servers in a round-robin fashion. The size of the data for each
exchange is 3 integers and 7 doubles. The total number of
exchanges for each run is 2 times the number of threads times
10,000.

B. Sphere Packing Model
The sphere packing code is an example used to demonstrate a
typical way to use DIEL. Given a string of P spheres of radius
1, a string of Q spheres of radius 1, and a cylinder of radius R,
the goal is to wrap the strings of spheres around the cylinder
so that the centers of the final spheres in each string match up
perfectly, forming a ring around the cylinder, illustrated in
Fig. 11. Given P and Q (the lengths of the strings), the radius
of the cylinder and the height difference between the spheres
in the string are solved using a genetic algorithm. The code is
divided into two loosely coupled DIEL modules. One module
takes in sets of parameters and calculates the distance between
the final sphere centers (the fitness function). The other
module takes in sets of parameters and fitness functions, and
creates new sets of parameters based on linear combinations
of the fittest ”parents”. These modules communicate through
tuple communication, which allows flexibility to perform
multiple simulations concurrently. For example, one can run
several different sphere packing algorithms with different
strings of spheres, and run any number of copies of the genetic
algorithm to generate parameters. Fig. 12 shows the workflow
where multiple copies of the sphere packing algorithm are
computed, but only one copy of the genetic algorithm. The
genetic algorithm module receives any population that is ready
to be processed, as soon as it has been put in the tuple space.
In addition, several identical copies of the sphere packing
algorithm can be run concurrently.

Figure 11:Schmatic diagram of the sphere packing algorithm.

Figure 12:Workflow of the sphere packing simulation.

C. Cardiac Model
Cardiovascular disease is the leading cause of death in
America. Computer simulation and visualization of the
complicated dynamics of the heart have great potential to
provide quantitative guidance for diagnosis and treatment of
heart problems. There have been intensive research efforts on
developing accurate computer models to advance the
understanding of the mechanisms of cardiovascular dynamics.
To demonstrate the viability and functionalities of DIEL, we
have illustrated the workflow of a heart simulation is
illustrated in the Fig. 13.

Heartbeats are the result of a sequence of electrochemical
excitation waves that are initiated from the sinoatrial node.
The electrical impulses induce intracellular calcium cycling,
which in turn causes heart muscles to contract. This process,
known as excitation-contraction coupling (ECC), is essential
to the functioning of a healthy heart. On the other hand,
mechanical changes that respond to neural and hormonal
influences also impact the electrical properties of the heart.
When a part of the heart tissue is stimulated, the induced
action-potential propagates out, making the tissue contract.
Such action is controlled by a given set of Kirchoff stress
parameters and stress activated ion channels. The fluid flow
pattern in the deformed ventricle is governed by the Navier
Stokes equations and will be solved by an in-house multi-
purpose finite element code [19].

Figure 13: Workflow of a cardiac simulation using DIEL.

Original
Mesh

Electro -
Physiological

Solver

Cell Model

Reaction -
Diffusion

Mechanical
Model

Update
Internal

Geometry with
GMSH

Surface Connectivity

Pre-
Processing

Tool

Parallel
Input Files

Fluid Solver

Objective
evaluator

Objective
evaluator

Execution
Start

Time Loop

Configuration
File

Sub Modules
Nodal

Mapping

Export Tet
Mesh

Data Exchange

Data
Analysis

Parameter
Adjutification

The biomechanical module is governed by a reaction–
diffusion equation describing the propagating potential and an
equilibrium equation describing the stress field [20].
Moreover, the electrical potential involves dozens of ODEs
governing variations of various ionic concentrations and gate
variables.

The interaction between the biomechanical and fluid modules
requires regenerating an internal flow mesh during the course
of the simulation. Reconstructing the changed mesh utilizing
the Gmsh library [21] is used to reconstruct the new mesh.
The Gmsh library is capable of generating internal
unstructured tetrahedron meshes based on defined surfaces.

IV. CONCLUSION AND FUTURE WORK

The DIEL has given users the ability to run multiple sets of
serial and parallel code concurrently on a supercomputer. It
allows the management of workflow to be specified in an
input file. Two interfaces of communication functions are
built to accommodate the transfer of data in deterministic or
stochastic manners. The presented DIEL framework is
designed to be portable across many computing platforms that
are commonly used for simulating many multiphysics
problems.

As we work to expand the scope of this framework, we will
encompass non-geometrical association written to a binary
HDF5 file and XML file that can be taken in by DIEL in
parallel. We are also working to extend and improve the
performance of current algorithms for tuple space
communication. The viability of a mixture of multi-
component physics-based code depends on the convergent
property of their couplers. We will examine various numerical
schemes and leverage the first-hand experiences from the
researchers at other institutions to organize a set of coupling
techniques in DIEL. Although dynamic runtime task analysis
and scheduling can sometimes greatly enhance the
performance of a set of loosely connected codes, it will only
be considered in some specific cases when the needs from the
user community is significant.

ACKNOWLEDGMENT
This material is based upon work performed using

computational resources supported by the University of
Tennessee and Oak Ridge National Laboratory's Joint Institute
for Computational Sciences (http://www.jics.utk.edu). Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the University of Tennessee,
Oak Ridge National Laboratory, or the Joint Institute for
Computational Sciences.

REFERENCES

[1] www.top500.org
[2] Scalapack : www.netlib.org/scalapack
[3] S. Balay, et al, PETSc Users Manual, Argonne National Laboratory,

ANL-95/11 – Revision 3.5, 2014.
[4] Trilonos : trilinos.sandia.gov
[5] H. P. Langtangen, Advanced Topics in Computational Partial

Differential Equations - Numerical Methods and Diffpack Programming;
Tveito, Aslak (Eds.) Series: Lecture Notes in Computational Science and
Engineering, Vol. 33, 2003.

[6] Overture : www.overtureframework.org
[7] DEALII : www.dealii.org
[8] CESM : www2.cesm.ucar.edu
[9] www.cca-forum.org/db/news/documentation/whitepaper05.pdf, High

Performance Scientific Component Research: Accomplishments and
Future Directions

[10] MOOSE : www.inl.gov/research/moose-applications/
[11] T. J. Tautges, H. Kim, A. Caceres, and R. Jain, "Coupled Multi-Physics

simulation frameworks for reactor simulation: A Bottom-Up approach",
In International Conference on Mathematics and Computational
Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio
de Janiero, Brazil, May 2011. American Nuclear Society.

[12] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandi, "MOOSE: a
parallel computational framework for coupled systems of nonlinear
equations", Nuclear Engineering and Design, 239(10):1768–1778,
October 2009.

[13] MAGMA : www.icl.utk.edu/magma
[14] D. Gelernter, “Generative Communication in Linda,” ACM

Transactions on Programming Languages and Systems, vol. 7, no. 1, pp.
80-112, 1985.

[15] Q. H. Mamoud, (2005, July 12), Getting Started With JavaSpaces
Technology: Beyond Conventional Distributed Programming
Paradigms,
http://www.oracle.com/technetwork/articles/javase/javaspaces,
140665.html

[16] Berkeley Lab, (2013, Nov. 4), Berkeley Unified Parallel C (UPC)
Project, [Online]. Available: http://upc.lbl.gov/

[17] W. Jiang, et al., "High performance MPI-2 one-sided communication
over InfiniBand,” Cluster Computing and the Grid, 2004. CCGrid 2004.
IEEE International Symposium on. IEEE, 2004.

[18] T. Jin et al., “Using Cross-Layer Adaptations for Dynamic Data
Management in Large Scale Coupled Scientific Workflows,”
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), November, 2013.

[19] K. Wong and A. Baker, “A Modular Collaborative Parallel CFD
Workbench,” J. Supercomputing, vol. 22, pp. 45-53, 2002.

[20] A. Kail, et al., “Interoperable executive library for the simulation of
biomedical processes,” J. Computational and Applied Mathematics,
http://dx/doi.org/10.1016/j.cam.2014.01.011, 2014.

[21] C. Geuzaine and J.-F. cois Remacle, Gmsh reference manual, 2013.
[22] T. Vogel., Y. W. Li,, T. Wust andD. P. Landau, A general parallel

framework forWang-Landau sampling. Physical Review Letters 110,
210603, 2013.

[23] E. Deelman, et al, Pegasus: a Workflow Management System for
Science Automation, Future Generation Computer Systems, 2014.

[24] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. vonLaszewski, I. Raicu,
T. Stef-Praun and M. Wilde, Swift: Fast, Reliable, Loosely Coupled
Parallel Computation IEEE International Workshop on Scientific
Workflows 2007.

